Bio-inspired learning has been gaining popularity recently given that Backpropagation (BP) is not considered biologically plausible. Many algorithms have been proposed in the literature which are all more biologically plausible than BP. However, apart from overcoming the biological implausibility of BP, a strong motivation for using Bio-inspired algorithms remains lacking. In this study, we undertake a holistic comparison of BP vs. multiple Bio-inspired algorithms to answer the question of whether Bio-learning offers additional benefits over BP, rather than just biological plausibility. We test Bio-algorithms under different design choices such as access to only partial training data, resource constraints in terms of the number of training epochs, sparsification of the neural network parameters and addition of noise to input samples. Through these experiments, we notably find two key advantages of Bio-algorithms over BP. Firstly, Bio-algorithms perform much better than BP when the entire training dataset is not supplied. Four of the five Bio-algorithms tested outperform BP by upto 5% accuracy when only 20% of the training dataset is available. Secondly, even when the full dataset is available, Bio-algorithms learn much quicker and converge to a stable accuracy in far lesser training epochs than BP. Hebbian learning, specifically, is able to learn in just 5 epochs compared to around 100 epochs required by BP. These insights present practical reasons for utilising Bio-learning rather than just its biological plausibility and also point towards interesting new directions for future work on Bio-learning.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
Through in-context learning (ICL), large-scale language models are effective few-shot learners without additional model fine-tuning. However, the ICL performance does not scale well with the number of available training samples as it is limited by the inherent input length constraint of the underlying language model. Meanwhile, many studies have revealed that language models are also powerful feature extractors, allowing them to be utilized in a black-box manner and enabling the linear probing paradigm, where lightweight discriminators are trained on top of the pre-extracted input representations. This paper proposes prompt-augmented linear probing (PALP), a hybrid of linear probing and ICL, which leverages the best of both worlds. PALP inherits the scalability of linear probing and the capability of enforcing language models to derive more meaningful representations via tailoring input into a more conceivable form. Throughout in-depth investigations on various datasets, we verified that PALP significantly enhances the input representations closing the gap between ICL in the data-hungry scenario and fine-tuning in the data-abundant scenario with little training overhead, potentially making PALP a strong alternative in a black-box scenario.
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
Neural networks trained with ERM (empirical risk minimization) sometimes learn unintended decision rules, in particular when their training data is biased, i.e., when training labels are strongly correlated with undesirable features. To prevent a network from learning such features, recent methods augment training data such that examples displaying spurious correlations (i.e., bias-aligned examples) become a minority, whereas the other, bias-conflicting examples become prevalent. However, these approaches are sometimes difficult to train and scale to real-world data because they rely on generative models or disentangled representations. We propose an alternative based on mixup, a popular augmentation that creates convex combinations of training examples. Our method, coined SelecMix, applies mixup to contradicting pairs of examples, defined as showing either (i) the same label but dissimilar biased features, or (ii) different labels but similar biased features. Identifying such pairs requires comparing examples with respect to unknown biased features. For this, we utilize an auxiliary contrastive model with the popular heuristic that biased features are learned preferentially during training. Experiments on standard benchmarks demonstrate the effectiveness of the method, in particular when label noise complicates the identification of bias-conflicting examples.
translated by 谷歌翻译
网络安全研究中的关键主题之一是自动COA(行动)攻击搜索方法。被动搜索攻击的传统COA攻击方法可能很困难,尤其是随着网络变大。为了解决这些问题,正在开发新的自动COA技术,其中,本文设计了一种智能的空间算法,以在可扩展网络中有效运行。除空间搜索外,还考虑了基于蒙特卡洛(MC)的时间方法来照顾时间变化的网络行为。因此,我们为可扩展和时变网络的时空攻击COA搜索算法提出了一个时空攻击。
translated by 谷歌翻译
打字机域是一种常见的网络攻击技术。它涉及利用域名,这些域名利用常见访问域的可能的印刷错误,进行恶意活动,例如网络钓鱼,恶意软件安装等。当前方法通常围绕字符串比较算法(如Demaru-Levenschtein距离(DLD))算法围绕字符串比较算法进行。这样的技术没有考虑到键盘距离,研究人员认为这与典型的印刷错误有很强的相关性,并正在尝试考虑。在本文中,我们介绍了Typoswype框架,该框架将字符串转换为天生考虑键盘位置的图像。我们还展示了如何通过三胞胎损失或NT Xent损失训练的涉及卷积神经网络的现代状态图像识别技术如何应用​​到距离距离距离的较低空间,距离距离对应于图像,并且等效地,文本为文本相似。最后,我们还展示了我们方法在广泛使用的DLD算法上改善错字方检测的能力,同时保持分类准确性,即输入域试图打错方格。
translated by 谷歌翻译
COVID-19大流行刺激的快速数字化导致了更多的网络犯罪。现在,恶意软件即服务是网络犯罪分子的蓬勃发展的业务。随着恶意软件活动的激增,对于网络辩护人来说,更多地了解他们手头的恶意软件样本,因为这些信息可以极大地影响他们在违规过程中的下一步行动。最近,研究人员展示了如何通过将恶意软件二进制文件转换为灰度图像,然后通过神经网络进行分类来完成恶意软件家庭分类。但是,大多数工作着重于研究不同神经网络体系结构对分类性能的影响。在去年,研究人员表明,通过自我监督学习来增强监督学习可以提高绩效。甚至最近,Data2Vec被提议为一种训练神经网络的情态自我监督框架。在本文中,我们介绍了Binimg2Vec,这是一个培训恶意软件二进制图像分类器的框架,该框架既包含了自我监督的学习和监督学习,又可以产生一个模型,该模型始终优于仅通过监督学习而受过培训的模型。我们能够在分类性能上提高4%,并在多次运行中降低0.5%的性能差异。我们还展示了我们的框架如何产生可以很好地聚类的嵌入,从而促进模型的解释。
translated by 谷歌翻译
最近的深度学习模型在言语增强方面已经达到了高性能。但是,获得快速和低复杂模型而没有明显的性能降解仍然是一项挑战。以前的知识蒸馏研究对言语增强无法解决这个问题,因为它们的输出蒸馏方法在某些方面不符合语音增强任务。在这项研究中,我们提出了基于特征的蒸馏多视图注意转移(MV-AT),以在时域中获得有效的语音增强模型。基于多视图功能提取模型,MV-AT将教师网络的多视图知识传输到学生网络,而无需其他参数。实验结果表明,所提出的方法始终提高瓦伦蒂尼和深噪声抑制(DNS)数据集的各种规模的学生模型的性能。与基线模型相比,使用我们提出的方法(一种用于有效部署的轻巧模型)分别使用了15.4倍和4.71倍(FLOPS),与具有相似性能的基线模型相比,Many-S-8.1GF分别达到了15.4倍和4.71倍。
translated by 谷歌翻译
大规模的预训练的语言模型(PLM)以能够仅通过在提示中调节一些被称为示范的示威演示的情况而不明确调整为所需的下游任务而被称为示威的示威来解决任务。但是,这种过程(即,在文章中的学习)自然会高度依赖通常从外部数据集中选择的演示。在本文中,我们提出了自我生成的文化学习(SG-ICL),该学习生成了从PLM本身中的文化学习演示,以最大程度地减少对外部演示的依赖。我们对四个不同的文本分类任务进行实验,并显示SG-ICL的表现明显优于零射击学习,并且通常价值约0.6个黄金训练样本。此外,与培训数据集的随机选择相比,我们的生成的演示表现出更一致的性能,方差较低。
translated by 谷歌翻译